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The effect of stationary, finite-amplitude, linear and nonlinear optimal perturbations
on the modal disturbance growth in a Mach 6 axisymmetric flow over a 7◦ half-angle cone
with 0.126 mm nose radius and 0.305 m length is investigated. The freestream parameters
(M = 6, Re′ = 18×106/m) are selected to match the flow conditions of a previous experiment
in the VKI H3 hypersonic tunnel. Plane-marching parabolized stability equations are
used in conjunction with a partial-differential equation based planar eigenvalue analysis to
characterize the boundary layer instability in the presence of azimuthally periodic streaks.
The streaks are observed to stabilize nominally planar Mack mode instabilities, although
oblique Mack mode and first-mode disturbances are destabilized. Experimentally measured
transition onset in the absence of any streaks correlates with an amplification factor of N = 6
for the planar Mack modes. For high enough streak amplitudes, the transition threshold of
N = 6 is not reached by the Mack mode instabilities within the length of the cone; however,
subharmonic first-mode instabilities, which are destabilized by the presence of the streaks,
do reach N = 6 near the end of the cone. The highest stabilization is observed at streak
amplitudes of approximately 20 percent of the freestream velocity. Because the use of initial
disturbance profiles based on linear optimal growth theory may yield suboptimal control in
the context of nonlinear streaks, the computational predictions are extended to nonlinear
optimal growth theory. Results show that by using nonlinearly optimal perturbation leads
to slightly enhanced stabilization of plane Mack mode disturbances as well as reduced
destabilization of subharmonic first-mode disturbances.

Nomenclature

A streak amplitude parameter
Asu streak amplitude based

on streamwise velocity
E energy norm
G energy gain
h1 streamwise metric factor
h3 spanwise metric factor
J objective function
L cone length
m azimuthal wavenumber
M Mach number
q̄ vector of base flow variables
q̃ vector of perturbation variables
q̂ vector of amplitude variables
Re Reynolds number
rb local radius
rn nose radius

T temperature
Tw wall temperature
(u, v, w) streamwise, wall-normal and

spanwise velocity components
(x, y, z) Cartesian coordinates
α streamwise wavenumber
β spanwise wavenumber
δ similarity scale
κ streamwise curvature
ω angular frequency
ρ density
θ local half-angle
ν kinematic viscosity
(ξ, η, ζ) streamwise, wall-normal and

spanwise coordinates
A, B, C, D, L PSE matrix operators
P, Q, R, S, T, V plane-marching PSE matrix

∗NASA NPP Fellow, Computational AeroSciences Branch. AIAA Member
†Research Scientist, Computational AeroSciences Branch. AIAA Associate Fellow
‡Research Scientist, Computational AeroSciences Branch.

1 of 16

American Institute of Aeronautics and Astronautics

https://ntrs.nasa.gov/search.jsp?R=20170005691 2019-04-29T09:17:19+00:00Z



operators
F nonlinear vector operator
M energy weight matrix

Subscript

lin linear
mean mean gain
out outlet gain
∞ freestream value
0 initial position
1 final position

Superscripts

∗ dimensional value
H conjugate transpose

Abbreviations

CA continuous adjoint

DA discrete adjoint
EVP eigenvalue problem
FM first mode
FST freestream turbulence
L linear
LST linear stability theory
MFD mean flow distortion
MM Mack mode
MVG micro vortex generators
NL nonlinear
NS Navier-Stokes
OSE Orr-Sommerfeld and Squire

equations
PDE partial differential equations
PSE parabolized stability equations
TS Tollmien-Schlichting

I. Introduction

Laminar-turbulent transition of boundary layer flows can have a strong impact on the performance of
hypersonic vehicles because of its influence on the surface skin friction and aerodynamic heating. Therefore,
the prediction and control of transition onset and the associated variation in aerothermodynamic parameters
in high-speed flows is a key issue for optimizing the performance of the next-generation aerospace vehicles.

Under low levels of background disturbances, transition is initiated by the exponential amplification of
linearly unstable eigenmodes, i.e., modal instabilities of the laminar boundary layer. In two-dimensional
boundary layers, different instability mechanisms dominate the exponential growth phase depending on
the flight speed. Planar, i.e., two-dimensional, Tollmien-Schlichting (TS) waves are the most unstable in the
incompressible regime, whereas oblique first-mode instabilities correspond to the most amplified disturbances
in supersonic boundary layers. The hypersonic regime is again dominated by the growth of planar acoustic
waves of the second mode, i.e., Mack mode type.1 In the presence of sufficiently strong external disturbances
in the form of either freestream turbulence (FST) or three-dimensional wall roughness, streamwise streaks
involving alternately low and high streamwise velocity have been observed to appear in incompressible
boundary layers.2 Further research in the incompressible regime has shown that high amplitude streaks
can become unstable to shear layer instabilities that lead to a form of “bypass transition.”3 When the
streak amplitudes are low enough to avoid these instabilities, i.e., when the background disturbance level is
moderate, the streaks can actually reduce the growth of the TS waves as documented in both theoretical
and experimental studies.4–6 The stabilizing effect of stationary streaks in low-speed boundary layers has
been used in passive flow control strategies to demonstrate delayed onset of transition by using micro vortex
generators (MVG) along the body surface.7,8

Despite the numerous research efforts focused on tripping hypersonic boundary layer flows by using
roughness elements, there have been a few experimental and numerical studies reporting a delay in transition
under certain circumstances. Most of these studies used two-dimensional roughness elements. James9 used
fin-stabilized hollow tube models in free flight with a screw-thread type of distributed two-dimensional
roughness. He found that for a given freestream Mach number between the range of 2.8 to 7, there exists an
optimum roughness height for transition delay. Fujii10 studied the effects of two-dimensional roughness by
using a 5◦ half-angle sharp cone at a freestream Mach number of 7.1. He also observed transition delay for
certain conditions when the wavelength of the wavy wall roughness was comparable to that of the Mack mode
instabilities. More recently, Font et al.11,12 performed numerical and experimental studies, respectively, that
were focused on the effect of two-dimensional surface roughness on the stability of a hypersonic boundary
layer at a freestream Mach number of 6. The experiments11 used a flared cone with strips of roughness in
the Boeing/AFOSR Mach 6 Quiet Tunnel and supported the numerical predictions indicating a stabilizing
influence on the amplification of Mack mode disturbances.12 In particular, these studies showed that the
most dominant Mack mode instability could be suppressed via judicious placement of the roughness elements
along the surface of the cone. Among the limited experimental evidence of delayed transition in a hypersonic
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boundary layer and in the presence of three-dimensional roughness elements is the study by Holloway &
Sterrett,13 who used a single row of spherical roughness elements partially recessed within a flat plate model
in the NASA Langley 20-inch Mach 6 tunnel. Data for multiple Mach numbers at the boundary layer edge
were obtained by varying the plate mounting angle. They found that, for cases with the smallest roughness
diameters, transition was delayed for Mach numbers larger than 3.7, which approximately corresponds to the
lower bound for second-mode dominance over first-mode instabilities in a flat plate boundary layer at typical
wind tunnel conditions. Therefore, their results are suggestive of stabilizing influence of roughness-induced
streaks on Mack mode waves. When the roughness height becomes sufficiently large, the streaks can develop
high-frequency instabilities that can lead to earlier transition14 as found by Holloway & Sterrett.13

Theoretical studies of the interaction between stationary disturbances and Mack mode instabilities in
hypersonic boundary layers have been recently initiated. Li et al.15 studied the interaction of Goertler
vortices with Mack mode instabilities on a flared cone, demonstrating a possible route to transition via this
interaction. Li et al.16 studied the secondary instability of crossflow vortices in a hypersonic cone at angle of
attack and found that nonlinearly saturated crossflow vortices destabilize the Mack modes. Also, after the
completion of this work, the authors became aware of the recent publication by Ren et al.,17 who studied
the stabilizing effect of weakly nonlinear suboptimal streaks and Goertler vortices on the planar first-mode
and Mack mode instabilities. Ren et al.17 documented a slight reduction in the logarithmic amplification
factor, i.e., N -factor, relative to the baseline, zero-streaks case for both a flat plate boundary layer with
suboptimal streaks (∆N ≈ 0.2) and a concave plate with Goertler vortices. Recently, Paredes et al.18 have
demonstrated that finite-amplitude optimal streaks can substantially damp planar Mack mode instabilities
in the hypersonic flow over a circular cone at zero angle of attack, although first-mode instabilities are
destabilized.

The development of roughness-induced streaks is strongly dependent on the details of roughness element
shape, height, and spanwise or azimuthal spacing. A conceptually simple model that can characterize as
well as provide an upper bound on the transient algebraic growth and subsequent slow decay of boundary
layer streaks due to arbitrary initial disturbances is the optimal growth theory; see Ref. 19 for a review. The
transient growth arises as a result of the non-normality of disturbance equations, and the optimal growth
theory seeks to maximize the disturbance growth between a selected pair of streamwise locations. Regardless
of the flow Mach number, the disturbances experiencing the highest magnitude of transient growth have been
found to be stationary streaks that arise from initial perturbations that correspond to streamwise vortices.
The instabilities of optimal streaks with finite initial amplitudes in supersonic and hypersonic boundary
layers has been addressed in recent work;20,21 however, the effect of lower amplitude, i.e., stable, or at most
weakly unstable streaks, on the growth of Mack mode instabilities has not been studied as yet. The present
work seeks to bridge this gap with the goal of developing a more thorough knowledge base for transition
prediction in the presence of stationary streaks and potentially expand the range of available techniques for
transition control at hypersonic edge Mach numbers.

To that end, we study the effect of a periodic array of finite-amplitude streaks on the dominant instability
waves in axisymmetric or two-dimensional boundary layers at hypersonic Mach numbers, i.e., the Mack mode
instabilities. Figure 1 shows a schematic of the flow configuration considered in this work. The geometry
is a 7◦ half-angle circular cone with rn = 0.126 mm nose radius and L = 0.305 m length. The freestream
parameters (M = 6, Re′ = 18 × 106/m, T ∗∞ = 60.98 K) are selected to match the flow conditions of
a previous experiment in the VKI H3 hypersonic tunnel.22 Experimental measurements and theoretical
predictions based on quasiparallel, linear stability theory (LST) and the nonparallel, parabolized stability
equations (PSE) have confirmed that laminar-turbulent transition in this flow is driven by the modal growth
of planar Mack mode instabilities.22 The array of actuators shown in Fig. 1 is purely notional, as the analysis
presented herein is based on boundary layer streaks resulting from the transient growth of an optimal initial
perturbation.

II. Theory

This section introduces the methodologies used in this paper. First, the linear optimal growth theory
based on the PSE is briefly discussed. This method is used to obtain the optimal perturbation that results in
a maximum energy gain at a downstream position. Furthermore, a nonlinear optimal growth theory based
on the plane-marching PSE is also introduced. Then, both the linear and nonlinear optimal perturbations
are used as initial condition with a given finite amplitude for the parabolic integration of the stationary,
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Figure 1. Sketch (side view) of the cone illustrating the present conceptual configuration. The wake of the periodic
array of actuators generate the periodic array of streaks that modulate the instability waves.

nonlinear plane-marching PSE to obtain a three-dimensional, azimuthal-periodic, perturbed boundary layer
flow. The modal instability analysis of the perturbed boundary layer flow is performed using the linear
form of the plane-marching PSE, and its particularities are discussed here. Finally, the discretization and
boundary conditions used in this paper are presented.

II.A. Linear optimal growth

Linear transient growth analysis is performed using the linear PSE as explained in Refs. 23 and 24. In the
PSE context, the perturbations have the form

q̃(ξ, η, ζ, t) = q̂(ξ, η) exp

[
i

(∫ ξ

ξ0

α(ξ′) dξ′ +mζ − ωt

)]
+ c.c., (1)

where c.c. denotes complex conjugate. The suitably nondimensionalized, orthogonal, curvilinear coordi-
nate system (ξ, η, ζ) denotes streamwise, wall-normal, and azimuthal coordinates and (u, v, w) represent the
corresponding velocity components. Density and temperature are denoted by ρ and T . The Cartesian coordi-
nates are represented by (x, y, z). The vector of perturbation fluid variables is q̃(ξ, η, ζ, t) = (ρ̃, ũ, ṽ, w̃, T̃ )T ,
and the vector of amplitude functions is q̂(ξ, η) = (ρ̂, û, v̂, ŵ, T̂ )T . The vector of basic state variables is
q̄(ξ, η) = (ρ̄, ū, v̄, w̄, T̄ )T . The streamwise and azimuthal wavenumbers are α and m, respectively; and ω is
the angular frequency of the perturbation.

Upon introduction of the perturbation form, Eq. (1) into the linearized NS equation together with the
assumption of a slow streamwise dependence of the basic state and the amplitude functions, thus neglecting
the viscous derivatives in ξ, the PSE are recovered as follows

Lq̂(ξ, η) =

(
A + B

∂

∂η
+ C

∂2

∂η2
+ D

1

h1

∂

∂ξ

)
q̂(ξ, η) = 0. (2)

The linear operators A, B, C, and D are given by Pralits et al.23 and h1 is the metric factor associated
with the streamwise curvature. The streamwise pressure gradient ∂p̂/∂ξ in the streamwise momentum
equation is dropped without any loss of accuracy for the present purely stationary disturbances of interest
in this work as justified by Refs. 6 and 25.

The optimal initial disturbance, q̃0, is defined as the initial (i.e., inflow) condition at ξ0 that yield a
maximum objective function, J(q̃). The objective function is defined as the energy gain of the perturbation
up to a specified position, ξ1. We use two definition of the energy gain; namely, the outlet energy gain,

Gout =
E(ξ1)

E(ξ0)
, (3)

and the mean energy gain,

Gmean =
1

ξ1 − ξ0

∫ ξ1
ξ0
E(ξ′)dξ′

E(ξ0)
, (4)
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where E denotes the energy norm of q̃. The energy norm is defined as

E(ξ) =
1

Lζ

∫
ζ

∫
η

q̃(ξ, η, ζ)HMq̃(ξ, η, ζ)h1 h3 dη dζ, (5)

where h3 is the metric factor associated with the azimuthal curvature, M is the energy weight matrix and
the superscript H denotes conjugate transpose. The positive-definite energy norm used here was derived by
Mack26 and Hanifi et al.27 and is defined as

M = diag

[
T̄ (ξ, η)

γρ̄(ξ, η)M2
, ρ̄(ξ, η), ρ̄(ξ, η), ρ̄(ξ, η),

ρ̄(ξ, η)

γ(γ − 1)T̄ (ξ, η)M2

]
. (6)

The variational formulation of the problem to determine the maximum of the objective functional J leads
to an optimality system,23,28,29 which is solved in an iterative manner starting from a random solution at
ξ0 that must satisfy the boundary conditions. Two approaches can be followed, the continuous adjoint (CA)
followed by Pralits et al.23 and Tumin & Reshotko28 or the discrete adjoint (DA) followed by Zuccher et
al.29 for compressible boundary layers. The comparison of the results following both CA and DA provides a
cross-validation of the transient growth module. Summarizing, the linear PSE, Lq̃ = 0, are used to integrate
q̃ up to ξ1, where the final optimality condition is used to obtain the initial condition for the backward
continuous or discrete adjoint PSE integration. At ξ0, the adjoint solution is used to calculate the new initial
condition for the forward PSE integration with the initial optimality condition. The iterative procedure
finishes when the value of J has converged up to a certain tolerance, which was set to a relative error of
10−4 in the present computations.

II.B. Nonlinear optimal growth

Nonlinear transient growth analysis is performed using an implicit formulation of the nonlinear plane-
marching PSE, which is equivalent to a perturbation form of the parabolized Navier-Stokes equations.20,30

In the nonlinear plane-marching PSE, the disturbance quantities are expanded in terms of their truncated
Fourier expansion in time as

q̃(ξ, η, ζ, t) =

N∑
n=−N

q̂n(ξ, η, ζ) exp

[
i

(∫ ξ

ξ0

αn(ξ′) dξ′ − nωt

)]
+ c.c. (7)

After substituting Eq. (7) into the NS equations, neglecting the viscous derivatives in ξ, and invoking
the PSE assumptions, the plane-marching PSE can be written in a compact form as(

Pn + Qn
∂

∂η
+ Rn

∂2

∂η2
+ Sn

1

h3

∂

∂ζ
+ Tn

1

h2
3

∂2

∂ζ2
+ Vn

1

h1

∂

∂ξ

)
q̂n(ξ, η, ζ) =

Fn(ξ, η, ζ) exp

(
−i

∫ ξ

ξ0

αn(ξ′) dξ′

)
, (8)

where Fn is the Fourier component of the total forcing F that arises from the nonlinear terms. The entries
in the coefficient matrices Pn Qn, Rn, Sn, Tn, Vn and vector F are found in Ref. 31. For the stationary
disturbances of interest in this paper, N = 0 and α0 = 0.

The nonlinear optimization formulation follows the same procedure as the linear formulation, although in
this case the initial perturbation is represented by two-dimensional amplitude function q̂0(η, ζ). The energy
gains are again defined as in Eqs. (3) and (4). As in the linear case, an optimality system is solved in an
iterative manner starting from a random solution at ξ0. For the nonlinear computations, the linear optimal
perturbation for the same set of parameters was used as initial condition with a selected finite amplitude.
Summarizing, the nonlinear plane-marching PSE equations are used to integrate q̃ up to ξ1, where the
final optimality condition is used to obtain the initial condition for the backward continuous or discrete
adjoint plane-marching PSE integration. The implicit integration of the forward problem is solved using
a Newton iterative method at each streamwise position. Note that the adjoint equations remain linear for
nonlinear optimization. At ξ0, the adjoint solution is used with the initial optimality condition to calculate
the new initial condition for the forward nonlinear plane-marching PSE integration. The iterative procedure
is stopped after the objective function is converged up to a specified tolerance, which was set to 10−4 as in
the linear computations. Further details about the nonlinear optimization method can be found in Ref. 32.
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II.C. Modal instability of perturbed flows

The linear, nonparallel stability characteristics of the modified basic state corresponding to the sum of the
circular cone boundary layer and the finite-amplitude linear and nonlinear optimal disturbances is studied
with the plane-marching PSE. The initial disturbance profiles for the plane-marching PSE are obtained using
a partial-differential-equation (PDE) based two-dimensional eigenvalue problem (EVP). The linear form of
the plane-marching PSE are recovered from Eq. (8) by setting F = 0. A single nonstationary perturbation
to the streak derived from Eq. (7) have the form

q̃(ξ, η, ζ, t) = q̂(ξ, η, ζ) exp

[
i

(∫ ξ

ξ0

α(ξ′) dξ′ − ωt

)]
. (9)

The onset of laminar-turbulent transition is estimated using the logarithmic amplification ratio based on
the energy norm E of Eq. (6),

N = −
∫ ξ

ξlb

αi(ξ
′) dξ′ + 1/2 ln

[
Ê(ξ)/Ê(ξlb)

]
, (10)

relative to the location ξlb where the disturbance first becomes unstable. Accordingly, we assume that
transition onset is likely to occur when the peak N -factor reaches a specified value.

II.D. Spatial discretization and boundary conditions

The PSE are integrated along the streamwise coordinate by using second-order backward differentiation. A
constant step of ∆R = 2.5, where R =

√
Rex, along the streamwise direction is used. Finite differences33,34

(FD-q) of eighth-order are used for discretization of the wall-normal coordinate. In the transient growth
computations with PSE, the wall-normal direction is discretized using Nη = 201. The nodes are clustered
towards the wall.34 The clustering of points is dependent on the boundary layer thickness, with half of the
grid points located below 10 × δ, where δ is the similarity scale. No-slip, isothermal boundary conditions
are used at the wall, i.e., û = v̂ = ŵ = T̂ = 0. The amplitude functions are forced to decay at the farfield
boundary by imposing the Dirichlet conditions ρ̂ = û = ŵ = T̂ = 0. The farfield boundary coordinate is set
just below the shock layer.

The plane-marching PSE are used to predict the nonlinear evolution of finite-amplitude transient growth
disturbances as well as the linear amplification characteristics of secondary instabilities sustained by those
nonlinear disturbances. The plane-marching PSE are integrated using the same streamwise and wall-normal
discretizations as that of the linear optimal growth analysis by using classic PSE. In addition to the stream-
wise and wall-normal directions, the azimuthal direction is discretized with Fourier collocation points. Note
that the PSE operators of Eq. (2) depend only on the streamwise and wall-normal coordinates. Depending
on the amplitude of the primary, optimal growth perturbation, the number of azimuthal points is varied
from Nζ = 16 to Nζ = 48. Similar to the streamwise and wall-normal grids, the same azimuthal grids are
used to compute the evolution of both finite-amplitude streaks and secondary modal disturbances.

The number of discretization points in all three directions was varied to ensure that the relevant flow
quantities were insensitive to further improvement in grid resolution. Verification of the present linear
optimal growth module against available transient growth results from the literature is shown in Refs. 35
and 24. Furthermore, the linear and nonlinear transient growth results are cross-validated by comparing
continuous adjoint (CA) and discrete adjoint (DA) formulations.

III. Verification

The incompressible zero-pressure-gradient flat plate boundary layer flow is studied for verification of the
nonlinear transient growth module. For this problem, the computational and physical coordinates coincide,
i.e., (ξ, η, ζ) ≡ (x, y, z); and therefore, the metric terms are h1 = h3 = 1. Note that for the flat plate case, the
azimuthal wavenumber m of the previously introduced perturbation forms, Eqs. (1) and (7), is substituted by
an spanwise wavenumber β. To compare with the transient growth predictions based on the large Reynolds
number asymptotic framework that leads to linearized boundary region equations,36 the present transient
growth results based on the PSE are computed using ReL = 108 (R1 = 10, 000) to approximate asymptotic
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predictions for a large Reynolds number, and M = 10−3 to approximate incompressible conditions. The
initial location is set at the leading edge x0 = 0, and the final optimization location is set as reference length
scale x1 = L.

First, the linear transient growth predictions based on the continuous adjoint (CA) and the discrete
adjoint (DA) approaches are compared for cross-validation purposes. The outlet energy gain Gout and
the mean energy gain Gmean are selected as the objective functions to optimize. Figure 2(a) shows the
optimal energy gains scaled with ReL, i.e., Gout/ReL and Gmean/ReL, respectively, as functions of the
spanwise wavenumber. The discrete and continuous adjoint approaches lead to indistinguishable predictions
with both definitions of energy gain. By selecting the outlet energy gain Gout, the results of Andersson et
al.36 are recovered. The optimal spanwise wavenumber for maximum mean energy gain is approximately
β = 0.55, which agrees with the prediction documented by Zuccher et al.32 of β = 0.548. Figure 2(b) shows
the evolution of the energy norm scaled with ReL by using the initial perturbations that yield maximum
Gout and Gmean. The agreement between the predictions based on the discrete and continuous approaches
is excellent.
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Figure 2. (a) Linear optimal outlet energy gain (Gout) and mean energy gain (Gmean) in the incompressible flat plate
boundary layer with initial and final disturbance locations at x0 = 0 and x1 = 1. The results from Ref. 36 are denoted
as ABH (1999). (b) Linear energy gain evolution with β = 0.45 for J = Gout and β = 0.55 for J = Gmean. Results based
on the continuous adjoint (CA) and the discrete adjoint (DA) approaches are included for comparison.

Finally, the nonlinear optimization module is validated using both discrete and continuous approaches
with J = Gmean and β = 0.55. Figure 3 shows the evolution of the energy norm ratio [E(x)/E(x0)]/ReL with
linear (L) and nonlinear (NL) optimal perturbations. The selected initial amplitudes (A0 =

√
E0) correspond

to E0 = 10/ReL and E0 = 25/ReL. The linear prediction is also shown. The nonlinear optimization achieves
a slight increase of the energy gain for finite-amplitude perturbations. Again, the agreement between discrete
and continuous adjoint formulations is excellent.

IV. Results

Next, we study the axisymmetric boundary layer over a 7◦ circular cone in Mach 6 free stream. The length
of the nearly sharp cone is L∗ = 0.305 m and the nose radius is r∗n = 0.126 mm. The freestream conditions
are selected to replicate those of a previous experiment in the VKI H3 hypersonic tunnel,22 i.e., Mach 6 flow
at a unit Reynolds number of 18× 106/m, and freestream temperature of T ∗∞ = 60.98 K. Freestream values
are used as reference values for nondimensionalization. For this problem, the computational coordinates,
(ξ, η, ζ), are defined as an orthogonal body-fitted coordinate system. The metric factors are defined as

h1 = 1 + κη, (11)

h3 = rb + η cos(θ), (12)

where κ denotes the streamwise curvature, rb is the local radius, and θ is the local half-angle along the
axisymmetric surface, i.e., sin(θ) = drb/dξ. For the present straight circular cone (with exception of the nose
region that is not included in this analysis), κ ≡ 0 and θ is the half-angle of the cone equal to 7◦.
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Figure 3. Evolution of energy ratio E(x)/E(x0)/ReL of finite-amplitude, linear (L) and nonlinear (NL) optimal pertur-
bations initialized at x0 = 0 with β = 0.55 and J = Gmean. Results based on the continuous adjoint (CA) and on the
discrete adjoint (DA) approaches are included for comparison. The linear prediction (Linear), which corresponds to an
infinitesimal initial amplitude, is included.

IV.A. Transient growth characteristics

Herein, transient growth calculations are performed with the initial and final disturbance locations set to
x0/L = 0.1957 and x1/L = 0.4174, respectively. The range [x0, x1] has been chosen to obtain appreciable
streak amplitudes over a majority of the cone length, as will be shown in what follows.

Linear transient growth predictions are presented first. Figure 4(a) shows the outlet energy gain Gout
and the mean energy gain Gmean as a function of the azimuthal wavenumber. Again, the continuous and
discrete adjoint approaches lead to equivalent results. The optimal azimuthal wavenumbers corresponding to
maximum outlet and mean energy gains are found to be approximately equal to m = 50. Figure 4(b) shows
the evolution of the energy norm ratio E(x)/E(x0) within the optimization domain [x0, x1] for m = 50.
As observed in the incompressible flat plate case in Fig. 2(b), the optimization of the mean energy gain
yields a lower energy at x1 than with the outlet energy gain selection; but the energy is larger within most
of the integration domain. The components of the initial and final optimal perturbations with azimuthal
wavenumber m = 50 and both energy gain selections, J = Gout and J = Gmean, are plotted in Figs. 5(a)
and 5(b), respectively. As previously observed for a hypersonic flow over a hemisphere,37 using an objective
function based on the mean energy gain (Fig. 5(b,left)) leads to optimum initial profiles with a slightly
shorter wall-normal extension than the initial profiles obtained for an objective function based on the outlet
energy gain (Fig. 5(a,left)). Furthermore, the peaks of the initial profiles in the former case are located
slightly closer to the wall. The final perturbations are rather similar for both objective functions.

The nonlinear form of the plane-marching PSE is used to monitor the nonlinear development of the initial
disturbances. Figure 6(a) shows the evolution of the streak amplitude based on ũ,

Asu(ξ) =
1

2
[maxη,ζ(ũ(ξ, η, ζ))−minη,ζ(ũ(ξ, η, ζ))], (13)

for selected amplitudes of the linear optimal inflow perturbation shown in Fig. 5(a) for J = Gout. Unlike the
energy norm in Eq. (5), the velocity amplitude Asu is expected to be more closely related to the growth of
streak instabilities. The streak amplitude parameter A corresponds to the maximum streak amplitude Asu
achieved by a linear perturbation with the same initial amplitude, which is given by

A0 = A×
√
Elin,A=1, (14)

with E∗lin,A=1 = 5.5516×10−5 m ·Kg/s2 for J = Gout and E∗lin,A=1 = 6.3513×10−5 m ·Kg/s2 for J = Gmean.
As indicated by Eq. (14), the amplitude parameter A provides a convenient measure of the initial disturbance
amplitude. As seen in Fig. 6(a), the nonlinear effects reduce the streak amplitude relative to the linear
prediction; and hence, for any given case, max(Asu) < A. This maximum moves progressively upstream
as the amplitude parameter A is increased. Figures 6(b), 6(c) and 6(d) shows the isolines of streamwise
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Figure 4. (a) Linear optimal outlet energy gain (Gout) and mean energy gain (Gmean) in the Mach 6 circular cone
boundary layer with initial and final disturbance locations at x0/L = 0.1957 and x1/L = 0.4174. (b) Linear energy gain
evolution with m = 50 for J = Gout and J = Gmean. Results based on the continuous adjoint (CA) and on the discrete
adjoint (DA) approaches are included for comparison.
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Figure 5. Initial and final amplitude vectors for (a) optimal outlet energy gain and (b) optimal mean energy gain, with
x0/L = 0.1957, x1/L = 0.4174, and m = 50.
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velocity component of the superposition of the basic state and the nonlinear perturbation in the crossplane
at x/L = 0.5 for A = 0.05, A = 0.10 and A = 0.20, respectively. At the symmetry plane, ζ = Lζ/2,
the near-wall, low-momentum fluid is lifted upward by the counter-rotating vortices, resulting in a localized
region of large boundary layer thickness and lower wall shear. At the lateral symmetry plane, ζ = 0 (and
ζ = Lζ/2), the effect of the initial streamwise vortices is exactly the opposite, yielding a localized region
of reduced boundary layer thickness and increased wall shear. As the streak amplitude is increased, the
induced azimuthal gradients in the form of a detached three-dimensional shear-layer can support the growth
of streak instabilities, as studied by Paredes et al.20,21
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Figure 6. (a) Evolution of streak amplitudes based on u, Asu, of finite-amplitude, linear optimal perturbations initialized
at x0/L = 0.1957 with m = 50 and J = Gout. Also, isolines of streamwise velocity ū = 0 : 0.1 : 0.9, in the crossplane at
x/L = 0.5 for (b) A = 0.05, (c) A = 0.10, and (d) A = 0.20.

Using initial disturbance profiles based on the linear optimal growth theory leads to somewhat suboptimal
evolution of nonlinear streaks. Thus, nonlinear optimization is used with the objective function set equal
to the mean energy gain, J = Gmean. Figure 7 shows the evolution of the streak amplitudes for linear
and nonlinear optimal perturbations with A = 0.10 and A = 0.20 and the same optimization parameters
used previously: x0/L = 0.1957, x1/L = 0.4174, and m = 50. Again, the discrete and continuous adjoint
approaches lead to equivalent results. For these parameters, the nonlinear optimization yields a slight
reduction in the peak value of streak amplitude. This result implies that an increase of energy norm is not
necessarily equivalent to a higher value of streak amplitude.

IV.B. Modal instability characteristics of the unperturbed flow

Experimental measurements and theoretical predictions based on quasiparallel, linear stability theory (LST)
and the nonparallel PSE have confirmed that laminar-turbulent transition in this flow is driven by the modal
growth of planar Mack mode instabilities.22 The instability of the unperturbed flow is examined by PSE to
establish the transition behavior in the absence of stationary streak perturbations. The onset of laminar-
turbulent transition in the unperturbed boundary layer flow is estimated using N -factor evolution of the
planar Mack modes computed with the PSE. For the conditions of the experiment,22 transition onset in the
unperturbed cone boundary layer was measured to occur near x/L = 0.6. Figure 8 shows that the peak
N -factor at the measured transition location corresponds to N = 6, which is reached by a planar Mack mode
disturbance with frequency F = 550 kHz.

IV.C. Modal instability characteristics of the perturbed flow

The instability characteristics of the modified, streaky boundary layer flow are examined next. First, the
streaks plotted in Fig. 6 corresponding to J = Gout and finite-amplitude linearly optimal disturbances
initiated at x0/L = 0.1957 with m = 50 are studied. Figure 9 shows the frequency dependence of spatial
growth rates at a fixed axial location of x/L = 0.5 as computed using quasiparallel PDE-based EVP. Results

10 of 16

American Institute of Aeronautics and Astronautics



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.2 0.4 0.6 0.8 1

A
s u

x/L

L, DA, A = 0.10
NL, DA, A = 0.10
NL, CA, A = 0.10
L, DA, A = 0.20

NL, DA, A = 0.20
NL, CA, A = 0.20

Figure 7. Evolution of streak amplitudes based on u, Asu, of linear (L) and nonlinear (NL) optimal perturbations
initialized at x0/L = 0.1957 with m = 50 and J = Gmean. Results based on the continuous adjoint (CA) and on the
discrete adjoint (DA) approaches are included for comparison.

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

N

x/L

F = 550 kHz

Figure 8. N-factors of planar second mode disturbances in an unperturbed Mach 6 circular cone boundary layer. The
frequency is varied from F = 350 kHz to 800 kHz. The thick red dashed line denotes the frequency that first reaches
N = 6 (F = 550 kHz). The vertical black dot-dashed line denotes the measured transition location.22

11 of 16

American Institute of Aeronautics and Astronautics



are plotted for three different families of modes: mode MM0 reduces to a 2D Mack mode disturbance in the
limit of A → 0, whereas modes MM1,V and MM1,S correspond to oblique Mack mode disturbances (with
fundamental azimuthal wavelength equal to streak spacing) of varicose and sinuous type, respectively. Mode
shapes for each family at frequencies corresponding to peak local growth rate are shown in Figs. 9(b) through
9(d) for a streak amplitude of A = 0.10. Figure 9(a) shows a progressive reduction in the peak growth rate
of MM0 modes with increasing streak amplitude, although the rate of decrease becomes smaller at higher
values of A. The growth rate curves are displaced toward lower frequencies because the MM0 mode shape
concentrates on the crests of the modified flow (i.e., regions of increased boundary layer thickness) as shown
by Fig. 9(b). Also, Fig. 9(a) shows the opposite effect for the MM1,V modes, which are strongest within
the valleys of the modified basic state (Fig. 9(c)). The growth rates of the the MM1,V modes increase with
streak amplitude up to A = 0.10, and then decrease at higher A. In this case, the peak growth frequencies
increase with A. The upper neutral frequency also increases with A while the lower neutral frequency remains
relatively unchanged, leading to a higher bandwidth of unstable modes at larger A. In contrast, the streaks
have a stabilizing influence on the MM1,S modes for all A (Fig. 9(a)), and similar to the MM0 modes, their
peak growth frequency is reduced as a consequence of their mode shapes distribution that peaks in the
neighborhood of the crests (Fig. 9(d)).
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Figure 9. (a) Spatial growth rates (−αi) of planar Mack modes (MM0) and oblique Mack modes with varicose (MM1,V )
and sinuous (MM1,S) mode shapes for selected streak amplitudes at x/L = 0.5. Also, isocontours of streamwise velocity
magnitude for A = 0.10 and frequencies (b) F = 480 kHz for MM0, (c) F = 575 kHz for MM1,V , and (d) F = 540 kHz
for MM1,S. The color map of (b,c,d) varies from |û| = 0 (light yellow) to |û| = 1 (dark red). The isolines of basic state
massflux, ρ̄ū = 0 : 0.1 : 0.9, are added for reference.

To characterize the overall effect of streaks on the amplification of a Mack mode disturbance, we now
examine the spatial evolution of a fixed frequency MM0 mode with the plane-marching PSE. The logarithmic
amplification ratio based on the energy norm of Eq. 10 is used as a measure of the disturbance amplification.
Figure 10(a) illustrates the N -factor evolution of the MM0 mode with frequency F = 550 kHz for the
unperturbed basic state (A = 0.00) and the streaky flow with A = 0.10, together with the mode shape
at three axial positions (x/L = 0.40, 0.55, and 0.70 for the A = 0.10 case in Figs. 10(b) through 10(d),
respectively). The maximum value of the N -factor is N = 4.8 for the perturbed case and N = 6.0 for the
unperturbed case. Furthermore, the location of peak N -factor is moved downstream from x/L = 0.6 to
x/L = 0.7. The N -factor evolution for the perturbed case also indicates a different growth rate behavior
in comparison with the unperturbed case. As the streak amplitude increases to its maximum value near
x/L = 0.55 (Fig. 6(a)), the N -factor for the A = 0.10 case progressively deviates from that in the unperturbed
case because of a lower amplification rate; however, following a local N -factor peak near x/L = 0.55, there is
an additional region of amplification that causes the N -factor to increase again to reach its overall maximum
near x/L = 0.7. The accompanying evolution of the mode shape in Figs. 10(b) through 10(d) shows that the
peak of the fluctuation is initially located in the crest of the modified flow and then develops a secondary
peak in the valley region that eventually becomes the location of dominant fluctuations. Comparison of this
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mode shape evolution with the local results at x/L = 0.5 (Fig. 9) reveals that the MM0 mode gradually
evolves into the MM1,V mode downstream. The dashed lines in Fig. 10(a) indicate the N -factor evolution
for the same frequency using two “artificial” basic states: a two-dimensional basic state corresponding to
the spanwise average of the A = 0.10 flow, which corresponds to the unperturbed flow (A = 0.00) plus the
mean flow distortion (MFD) due to the streak, and the perturbed flow with A = 0.10 minus the MFD of
the perturbation. These extra cases are introduced to understand the primary mechanism for the effect of
the streak on the reduced amplification of the MM0 mode. By comparing the N -factor of the first extra
case (A = 0.00 + MFD) with that for the unperturbed flow (A = 0.00), we can see that the MFD has
a strong stabilizing influence on the MM0 mode. The N -factor evolution for the second “artificial” case
(A = 0.10 − MFD) indicates a longer region of amplification relative to the baseline case (A = 0.00),
revealing the previously discussed downstream shift of the N -factor maximum for the total perturbed flow
(A = 0.10) to be the result of the azimuthal gradients of the modified flow.
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Figure 10. (a) Evolution of N-factors with frequency F = 550 kHz for the unperturbed basic state (A = 0.00), the
unperturbed basic state plus the MFD of the A = 0.10 perturbation (A = 0.00 + MFD), the perturbed basic state
(A = 0.10), and the perturbed basic state without the MFD (A = 0.10 - MFD). The vertical dotted line denotes the initial
streak location, and the dash-dotted line denotes the experimentally observed transition location. Also, isocontours of
streamwise velocity magnitude for A = 0.10 and positions (b) x/L = 0.40, (c) x/L = 0.55, and (d) x/L = 0.70. The color
map of (b,c,d) same as Figs. 9(b)–9(d). The isolines of basic state massflux, ρ̄ū = 0 : 0.1 : 0.9, are added for reference.

The overall effect of the streaks is summarized in Fig. 11, where the N -factor envelope of the MM0

modes is plotted for each selected value of A. The primary focus of this work corresponds to the stabilizing
effect of streaks on Mack mode disturbances, which have been shown to cause transition in the present flow
configuration.22 For the conditions of the experiment,22 transition onset in the unperturbed cone boundary
layer was measured to occur near xtr/L = 0.6, where the peak N -factor of the MM0 modes is N = 6.
Selecting this value as the transition threshold, Fig. 11 shows how the transition onset due to MM0 modes
would be displaced downstream by the introduction of the optimal streaks. For the highest streak amplitude
considered herein (A = 0.20), the MM0 modes cannot reach the threshold N -factor over the entire length of
the cone.

Due to the myriad paths to transition, however, the reduced growth of Mack modes becomes a “neces-
sary” but not “sufficient” condition for delaying the onset of transition. In particular, oblique first-mode
disturbances may come into play at the typical conditions of wind tunnel experiments at Mach 6. Indeed,
calculations show that oblique sinuous first-mode disturbances with a subharmonic wavenumber of one half
the streak wavenumber (denoted as FM1/2,S) are destabilized by the streaks and, therefore, may reduce the
extent of transition delay. Therefore, N -factor envelopes for the FM1/2,S modes at the selected streak ampli-
tudes are also shown in Fig. 11. Observe that for streak amplitudes up to A = 0.10, the N -factor envelope of
the MM0 modes lies above the envelope of the FM1/2,S modes. But for A = 0.15 and A = 0.20, the FM1/2,S

modes eventually overtake the MM0 modes. Between the latter two cases, the threshold N -factor of N = 6
is reached further upstream for A = 0.20 (xtr/L = 0.92), so the optimal streak amplitude for the present
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flow configuration is close to A = 0.15, which reaches N = 6 at xtr/L = 0.96, yielding a 60% increase in the
length of the laminar flow relative to the unperturbed case.
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Figure 11. N-factor envelopes for nominally 2D Mack mode disturbances (mode MM0, solid lines) with a frequency
range F ∈ [350, 800] kHz and sinuous modes originating from first-mode waves with one half the azimuthal wavenumber
of underlying streaks (mode FM1/2,S, dashed lines) with a frequency range F ∈ [50, 150] kHz. The vertical dotted line
denotes the initial streak location, the black dash-dotted line denotes the experimentally observed transition location,
and the colored dash-dotted lines denote the location where N = 6 is reached for each corresponding streak amplitude.

Finally, the effect of using nonlinearly optimal initial disturbances on the modal instability characteristics
is investigated. Here, the streaks corresponding to J = Gmean and finite-amplitude linear and nonlinear
optimal disturbances from Fig. 7 are used as the basic state for instability evolution based on the plane-
marching PSE. Figures 12(a) and 12(b) show the N -factor evolution of the planar Mack mode (MM0) with
F = 550 kHz and the subharmonic first mode (FM1/2,S) with F = 125 kHz, respectively. A small difference is
observed between the N -factor curves based on the linear and nonlinear optimal perturbations with A = 0.10
for both MM0 and FM1/2,S . The deviation is more visible at the higher streak amplitude of A = 0.20. For
the planar Mack mode with F = 550 kHz, Fig. 12(a) shows a reduction of the first local maximum at
x/L ≈ 0.46 from N = 2.6 with the linear optimal perturbation to N = 2.4 with the nonlinear optimal
perturbation. However, the second local maximum at x/L ≈ 0.8 is unaffected by the initial disturbance
selection and remains approximately equal to N = 2.5. For the subharmonic first mode with F = 125 kHz,
the N -factor values associated with the nonlinear optimal disturbance are lower than those associated with
the linear optimal disturbance with the same initial amplitude. The maximum N -factor at the end of the
cone is reduced by ∆N ≈ 0.25.

We note that for streak amplitudes sufficiently higher than A = 0.20, the subharmonic first-mode dis-
turbances evolve into highly unstable streak instabilities that eventually reverse the transition delay and
become the agent for bypass transition.20,21 Of course, due to the lower surface temperature at typical flight
conditions, the role of these first-mode waves diminishes in flight, implying that the streaks are likely to be
even more effective in delaying transition on flight vehicles. Nonetheless, the computations presented in this
work suggest that the effect of streaks on the onset of transition can be verified even under wind tunnel
conditions. Prior to that, however, a thorough parameter study is desirable to address the effects of detuned
disturbances and of potentially suboptimal streak profiles that are more readily realizable via the available
set of actuation techniques. A parameter study for additional streak wavenumbers and excitation locations
would also help with identifying the optimal flow control settings to maximize the transition delay for a
given flow configuration.

V. Conclusions

Linear and nonlinear optimal transient growth analysis based on parabolized stability equations (PSE)
have been conducted for the laminar flow based on the solution of the Navier-Stokes equations over a hy-
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Figure 12. Evolution of N-factors associated to (a) MM0 with F = 550 kHz and (b) FM1/2,S with F = 125 kHz for
the unperturbed basic state (A = 0.00) and the perturbed basic states with linear (L) and nonlinear (NL) optimal
perturbations with initial amplitudes corresponding to A = 0.10 and A = 0.20.

personic, 7◦ half-angle circular cone, boundary layer at Mach 6. Optimal growth computations based on
the outlet energy gain and the mean energy gain are validated against the literature for the incompressible,
zero-pressure-gradient, flat plate boundary layer. Furthermore, linear and nonlinear transient growth results
are cross-validated by using the continuous and discrete adjoint approaches. The agreement is excellent
in all cases. Furthermore, the plane-marching PSE have been used to monitor the nonlinear disturbance
evolution of finite-amplitude linear and nonlinear optimal perturbations. Subsequently, the linear stability
characteristics of the perturbed streaky boundary layer flow are studied using the linear form of the plane-
marching PSE. The present results have demonstrated that stationary streaks in a Mach 6 axisymmetric
flow over a cone reduce the peak amplification of boundary layer instabilities, suggesting a delay in the
onset of laminar turbulent transition. For large streak amplitudes, the transition threshold is not reached by
originally-dominant Mack mode instabilities, however, subharmonic first-mode waves that are destabilized by
the streaks can limit the extent of transition delay. Setting the same initial amplitude for the linear and non-
linear optimal perturbations, the planar Mack mode and the subharmonic first-mode instabilities experience
a lower amplification with the nonlinear optimal perturbation than with the linear optimal perturbation.
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